User interface language: English | Español

HL Paper 3

This question investigates the sum of sine and cosine functions

The expression  3 sin x + 4 cos x can be written in the form  A cos ( B x + C ) + D , where  A , B R + and  C , D R and  π < C π .

The expression  5 sin x + 12 cos x can be written in the form  A cos ( B x + C ) + D , where  A , B R + and  C , D R and π < C π .

In general, the expression  a sin x + b cos x  can be written in the form  A cos ( B x + C ) + D , where  a , b , A , B R + and  C , D R and π < C π .

Conjecture an expression, in terms of a and b , for

The expression  a sin x + b cos x  can also be written in the form  a 2 + b 2 ( a a 2 + b 2 sin x + b a 2 + b 2 cos x ) .

Let  a a 2 + b 2 = sin θ

Sketch the graph  y = 3 sin x + 4 cos x , for  2 π x 2 π

[1]
a.i.

Write down the amplitude of this graph

[1]
a.ii.

Write down the period of this graph

[1]
a.iii.

Use your answers from part (a) to write down the value of  A , B  and D .

[1]
b.i.

Find the value of C .

[2]
b.ii.

Find arctan 3 4 , giving the answer to 3 significant figures.

[1]
c.i.

Comment on your answer to part (c)(i).

[1]
c.ii.

By considering the graph of  y = 5 sin x + 12 cos x , find the value of A B C and  D .

[5]
d.

A .

[1]
e.i.

B .

[1]
e.ii.

C .

[1]
e.iii.

D .

[1]
e.iv.

Show that b a 2 + b 2 = cos θ .

[2]
f.i.

Show that a b = tan θ .

[1]
f.ii.

Hence prove your conjectures in part (e).

[6]
g.

Markscheme

      A1

[1 mark]

a.i.

5       A1

[1 mark]

a.ii.

2 π       A1

[1 mark]

a.iii.

A = 5 B = 1 D = 0       A1

[1 mark]

b.i.

maximum at x = 0.644       M1

So C = 0.644       A1

[2 marks]

b.ii.

0.644      A1

[1 mark]

c.i.

it appears that  C = arctan 3 4       A1

[1 mark]

c.ii.

        M1

A = 13         A1

B = 1 and  D = 0         A1

maximum at  x = 0.395         M1

So C = −0.395   ( = arctan 5 12 )       A1

[5 marks]

d.

A = a 2 + b 2        A1

[1 mark]

e.i.

B = 1        A1

[1 mark]

e.ii.

C = arctan a b       A1

[1 mark]

e.iii.

D = 0       A1

[1 mark]

e.iv.

EITHER

use of a right triangle and Pythgoras’ to show the missing side length is b          M1A1

OR

Use of  si n 2 θ + co s 2 θ = 1 , leading to the required result         M1A1

[2 marks]

f.i.

EITHER

use of a right triangle, leading to the required result.         M1

OR

Use of tan θ = sin θ cos θ , leading to the required result.       M1

[1 mark]

f.ii.

a sin x + b cos x = a 2 + b 2 ( sin θ sin x + cos θ cos x )         M1

a sin x + b cos x = a 2 + b 2 ( cos ( x θ ) )         M1A1

So  A = a 2 + b 2 B = 1 and  D = 0        A1

And  C = θ         M1

So  C = arctan a b        A1

[6 marks]

g.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.i.
[N/A]
e.ii.
[N/A]
e.iii.
[N/A]
e.iv.
[N/A]
f.i.
[N/A]
f.ii.
[N/A]
g.



This question asks you to investigate some properties of the sequence of functions of the form f n ( x ) = cos ( n arccos x ) , −1 ≤ x ≤ 1 and n Z + .

Important: When sketching graphs in this question, you are not required to find the coordinates of any axes intercepts or the coordinates of any stationary points unless requested.

For odd values of n > 2, use your graphic display calculator to systematically vary the value of n . Hence suggest an expression for odd values of n describing, in terms of n , the number of

For even values of n > 2, use your graphic display calculator to systematically vary the value of n . Hence suggest an expression for even values of n describing, in terms of n , the number of

The sequence of functions, f n ( x ) , defined above can be expressed as a sequence of polynomials of degree n .

Consider  f n + 1 ( x ) = cos ( ( n + 1 ) arccos x ) .

On the same set of axes, sketch the graphs of y = f 1 ( x ) and y = f 3 ( x ) for −1 ≤  x ≤ 1.

[2]
a.

local maximum points;

[3]
b.i.

local minimum points;

[1]
b.ii.

On a new set of axes, sketch the graphs of y = f 2 ( x ) and y = f 4 ( x ) for −1 ≤ x ≤ 1.

[2]
c.

local maximum points;

[3]
d.i.

local minimum points.

[1]
d.ii.

Solve the equation f n ( x ) = 0 and hence show that the stationary points on the graph of y = f n ( x ) occur at x = cos k π n where k Z + and 0 < k < n .

[4]
e.

Use an appropriate trigonometric identity to show that f 2 ( x ) = 2 x 2 1 .

[2]
f.

Use an appropriate trigonometric identity to show that  f n + 1 ( x ) = cos ( n arccos x ) cos ( arccos x ) sin ( n arccos x ) sin ( arccos x ) .

[2]
g.

Hence show that  f n + 1 ( x ) + f n 1 ( x ) = 2 x f n ( x ) n Z + .

[3]
h.i.

Hence express f 3 ( x ) as a cubic polynomial.

[2]
h.ii.

Markscheme

correct graph of y = f 1 ( x )       A1

correct graph of y = f 3 ( x )       A1

[2 marks]

a.

graphical or tabular evidence that n has been systematically varied        M1

eg n = 3, 1 local maximum point and 1 local minimum point

n  = 5, 2 local maximum points and 2 local minimum points

n  = 7, 3 local maximum points and 3 local minimum points        (A1)

n 1 2  local maximum points      A1

[3 marks]

b.i.

n 1 2  local minimum points      A1

Note: Allow follow through from an incorrect local maximum formula expression.

[1 mark]

b.ii.

correct graph of y = f 2 ( x )        A1

correct graph of y = f 4 ( x )        A1

[2 marks]

c.

graphical or tabular evidence that n has been systematically varied       M1

eg n  = 2, 0 local maximum point and 1 local minimum point

n  = 4, 1 local maximum points and 2 local minimum points

n  = 6, 2 local maximum points and 3 local minimum points       (A1)

n 2 2 local maximum points     A1

[3 marks]

d.i.

n 2 local minimum points     A1

[1 mark]

d.ii.

f n ( x ) = cos ( n arccos ( x ) )

f n ( x ) = n sin ( n arccos ( x ) ) 1 x 2       M1A1

Note: Award M1 for attempting to use the chain rule.

f n ( x ) = 0 n sin ( n arccos ( x ) ) = 0      M1

n arccos ( x ) = k π ( k Z + )      A1

leading to

x = cos k π n   ( k Z +  and 0 <  k n )     AG

[4 marks]

e.

f 2 ( x ) = cos ( 2 arccos x )

= 2 ( cos ( arccos x ) ) 2 1      M1

stating that  ( cos ( arccos x ) ) = x      A1

so  f 2 ( x ) = 2 x 2 1      AG

[2 marks]

f.

 

f n + 1 ( x ) = cos ( ( n + 1 ) arccos x )

= cos ( n arccos x + arccos x )      A1

use of cos(A + B) = cos A cos B − sin A sin B leading to      M1

= cos ( n arccos x ) cos ( arccos x ) sin ( n arccos x ) sin ( arccos x )       AG

[2 marks]

g.

f n 1 ( x ) = cos ( ( n 1 ) arccos x )      A1

= cos ( n arccos x ) cos ( arccos x ) + sin ( n arccos x ) sin ( arccos x )     M1

f n + 1 ( x ) + f n 1 ( x ) = 2 cos ( n arccos x ) cos ( arccos x )      A1

= 2 x f n ( x )      AG

[3 marks]

h.i.

f 3 ( x ) = 2 x f 2 ( x ) f 1 ( x )       (M1)

= 2 x ( 2 x 2 1 ) x

= 4 x 3 3 x    A1

[2 marks]

h.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.i.
[N/A]
d.ii.
[N/A]
e.
[N/A]
f.
[N/A]
g.
[N/A]
h.i.
[N/A]
h.ii.



This question asks you to examine various polygons for which the numerical value of the area is the same as the numerical value of the perimeter. For example, a 3 by 6 rectangle has an area of 18 and a perimeter of 18.

 

For each polygon in this question, let the numerical value of its area be A and let the numerical value of its perimeter be P.

An n-sided regular polygon can be divided into n congruent isosceles triangles. Let x be the length of each of the two equal sides of one such isosceles triangle and let y be the length of the third side. The included angle between the two equal sides has magnitude 2πn.

Part of such an n-sided regular polygon is shown in the following diagram.

Consider a n-sided regular polygon such that A=P.

The Maclaurin series for tanx is x+x33+2x515+

Consider a right-angled triangle with side lengths a, b and a2+b2, where ab, such that A=P.

Find the side length, s, where s>0, of a square such that A=P.

[3]
a.

Write down, in terms of x and n, an expression for the area, AT, of one of these isosceles triangles.

[1]
b.

Show that y=2xsinπn.

[2]
c.

Use the results from parts (b) and (c) to show that A=P=4ntanπn.

[7]
d.

Use the Maclaurin series for tanx to find limn4ntanπn.

[3]
e.i.

Interpret your answer to part (e)(i) geometrically.

[1]
e.ii.

Show that a=8b-4+4.

[7]
f.

By using the result of part (f) or otherwise, determine the three side lengths of the only two right-angled triangles for which a, b, A, P.

[3]
g.i.

Determine the area and perimeter of these two right-angled triangles.

[1]
g.ii.

Markscheme

A=s2 and P=4s              (A1)

A=Ps2=4s              (M1)

ss-4=0

s=4s>0        A1

 

Note: Award A1M1A0 if both s=4 and s=0 are stated as final answers.

 

[3 marks]

a.

AT=12x2sin2πn        A1

 

Note: Award A1 for a correct alternative form expressed in terms of x and n only.

          For example, using Pythagoras’ theorem, AT=xsinπnx2-x2sin2πn  or  AT=212xsinπnxcosπn  or  AT=x2sinπncosπn.

 

[1 mark]

b.

METHOD 1

uses sinθ=opphyp         (M1)

y2x=sinπn        A1

y=2xsinπn       AG

 

METHOD 2

uses Pythagoras’ theorem y22+h2=x2  and  h=xcosπn         (M1)

y22+xcosπn2=x2  y2=4x21-cos2πn

=4x2sin2πn        A1

y=2xsinπn       AG

 

METHOD 3

uses the cosine rule         (M1)

y2=2x2-2x2cos2πn =2x21-cos2πn

=4x2sin2πn        A1

y=2xsinπn       AG

 

METHOD 4

uses the sine rule         (M1)

ysin2πn=xsinπ2-πn

ycosπn=2xsinπncosπn        A1

y=2xsinπn       AG

 

[2 marks]

c.

A=PnAT=ny         (M1)

 

Note: Award M1 for equating correct expressions for A and P.

 

12nx2sin2πn=2nxsinπn nx2sinπncosπn=2nxsinπn

12x2sin2πn=2xsinπn x2sinπncosπn=2xsinπn        A1

uses sin2πn=2sinπncosπn (seen anywhere in part (d) or in part (b))         (M1)

x2sinπncosπn=2xsinπn

attempts to either factorise or divide their expression         (M1)

xsinπnxcosπn-2=0

x=2cosπn, xsinπn0 (or equivalent)        A1

 

EITHER

substitutes x=2cosπn (or equivalent) into P=ny         (M1)

P=2n2cosπnsinπn        A1


Note:
Other approaches are possible. For example, award A1 for P=2nxcosπntanπn and M1 for substituting x=2cosπn into P.


OR

substitutes x=2cosπn (or equivalent) into A=nAT          (M1)

A=12n2cosπn2sin2πn

A=12n2cosπn22sinπncosπn        A1

 

THEN

A=P=4ntanπn       AG

 

[7 marks]

d.

attempts to use the Maclaurin series for tanx with x=πn         (M1)

tanπn=πn+πn33+2πn515+

4ntanπn=4nπn+π33n3+2π515n5+ (or equivalent)        A1

=4π+π33n2+2π515n4+

limn4ntanπn=4π        A1

 

Note: Award a maximum of M1A1A0 if limn is not stated anywhere.

 

[3 marks]

e.i.

(as n, P4π and A4π)

the polygon becomes a circle of radius 2                   R1

 

Note: Award R1 for alternative responses such as:
the polygon becomes a circle of area 4π OR
the polygon becomes a circle of perimeter 4π OR
the polygon becomes a circle with A=P=4π.
Award R0 for polygon becomes a circle.

 

[1 mark]

e.ii.

A=12ab and P=a+b+a2+b2                   (A1)(A1)

equates their expressions for A and P                 M1

A=Pa+b+a2+b2=12ab

a2+b2=12ab-a+b                M1

 

Note: Award M1 for isolating a2+b2 or ±2a2+b2. This step may be seen later.

 

a2+b2=12ab-a+b2

a2+b2=14a2b2-212aba+b+a+b2                M1

=14a2b2-a2b-ab2+a2+2ab+b2

 

Note: Award M1 for attempting to expand their RHS of either a2+b2= or 4a2+b2=.

 

EITHER

ab14ab-a-b+2=0  ab0               A1

14ab-a-b+2=0

ab-4a=4b-8

 

OR

14a2b2-a2b-ab2+2ab=0

a14b2-b+2b-b2=0  ab2-4b+8b-4b2=0               A1

a=4b2-8bb2-4b

 

THEN

a=4b-8b-4               A1

a=4b-16+8b-4

a=8b-4+4               AG

 

Note: Award a maximum of A1A1M1M1M0A0A0 for attempting to verify.
For example, verifying that A=P=16b-4+2b+4 gains 4 of the 7 marks.

 

[7 marks]

f.

using an appropriate method          (M1)

eg substituting values for b or using divisibility properties

5,12,13 and 6,8,10             A1A1

 

Note: Award A1A0 for either one set of three correct side lengths or two sets of two correct side lengths.

 

[3 marks]

g.i.

A=P=30  and  A=P=24            A1

 

Note: Do not award A1FT.

 

[1 mark]

g.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.i.
[N/A]
e.ii.
[N/A]
f.
[N/A]
g.i.
[N/A]
g.ii.